Landmark Classification With Hierarchical Multi-Modal Exemplar Feature
نویسندگان
چکیده
منابع مشابه
Automatic Method for Thalamus Parcellation Using Multi-modal Feature Classification
Segmentation and parcellation of the thalamus is an important step in providing volumetric assessment of the impact of disease n brain structures. Conventionally, segmentation is carried out on T1-weighted magnetic resonance (MR) images and nuclear parcellation using diffusion weighted MR images. We present the first fully automatic method that incorporates both tissue contrasts and several der...
متن کاملMulti-modal Semantic Place Classification Multi-modal Semantic Place Classification
The ability to represent knowledge about space and its position therein is crucial for a mobile robot. To this end, topological and semantic descriptions are gaining popularity for augmenting purely metric space representations. In this paper we present a multi-modal place classification system that allows a mobile robot to identify places and recognize semantic categories in an indoor environm...
متن کاملHierarchical Multi-Modal Place Categorization
In this paper we present an hierarchical approach to place categorization. Low level sensory data is processed into more abstract concept, named properties of space. The framework allows for fusing information from heterogeneous sensory modalities and a range of derivatives of their data. Place categories are defined based on the properties that decouples them from the low level sensory data. T...
متن کاملMulti-modal Semantic Place Classification
The ability to represent knowledge about space and its position therein is crucial for a mobile robot. To this end, topological and semantic descriptions are gaining popularity for augmenting purely metric space representations. In this paper we present a multi-modal place classification system that allows a mobile robot to identify places and recognize semantic categories in an indoor environm...
متن کاملHierarchical feature coding for image classification
Feature coding and pooling are two critical stages in the widely used Bag-of-Features (BOF) framework in image classification. After coding, each local feature formulates its representation by the visual codewords. However, the two-dimensional feature-code layout is transformed to a one-dimensional codeword representation after pooling. The property for each local feature is ignored and the who...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Multimedia
سال: 2015
ISSN: 1520-9210,1941-0077
DOI: 10.1109/tmm.2015.2431496